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J.  Phys. A: Math. Gen. 15 (1982) 1893-1907. Printed in Great Britain 

Bifurcations and chaos in the 4b4 theory on a lattice 

Per Bak and M H ~ g h  Jensen 
H C 0rsted Institute, University of Copenhagen, Universitetsparken 5, Copenhagen, 
Denmark 

Received 23 September 1981 

Abstract. We have studied numerically and analytically the discrete 44 model defined by 
Bak and Pokrovsky. The model may describe Peierls systems, structural instabilities, 
metal-insulator transitions, etc in solid state physics. The qb4 theory can be formulated 
as an area-preserving two-dimensional mapping. This mapping exhibits infinite series of 
period-doubling bifurcations leading to chaos. The bifurcations are characterised by 
universal numbers S = 8.721 09 .  . . and a = 4.0180. . . , which appear to be identical to 
those found by Bountis for the HCnon mapping, but different from the Feigenbaum 
numbers for dissipative systems. In addition, novel features arise because of marginally 
stable fixed points and the splitting of one 2-cycle orbit into two 2-cycle orbits. 

1. Introduction 

Recently Bak and Pokrovsky (1981) studied the one-dimensional discrete 44 theory 
defined by the Hamiltonian 

where % might be thought of as the energy of an array of atoms, connected with 
harmonic springs, in the double-well 44 potential (figure 1). A is the spring constant 
and aA the strength of the potential. The configurations which satisfy an energy 
extremum condition are found by differentiating (1.1) with respect to 4,, : 

Wn+l= Wn + a4n(42, - 1) 4 n + l =  4 n  + Wn+l (1.2) 

with Wn defined by the latter equation. It was found that, in addition to regular 
commensurate and incommensurate solutions, these equations have chaotic solutions. 
The model was used to generate a theory of metal-insulator transitions in Peierls 
systems, such as polyacetylene (Chiang et a1 1977, Rice 1979, Su et a1 1979), but the 
lattice 44 theory probably applies to a large class of problems in condensed matter 
physics (structural transitions, magnetic transitions, etc). 

Figure 1. Array of classical particles connected with springs in the double-well 44 potential. 
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1894 P Bak and M H Jensen 

In this paper the discrete 44 theory will be studied in detail for potentials stronger 
than those considered by Bak and Pokrovsky. We find infinite series of bifurcations 
described by universal numbers, as the strength of the potential is increased. 

In the last few years there has been considerable interest in deterministic systems 
exhibiting chaotic behaviour. In particular, it was shown by Feigenbaum (1978, 1979) 
that the sequences of bifurcations in the simple one-dimensional logistic mapping 

Xn+1=bxn(l-Xn) 

are characterised by universal numbers and lead to chaos. This may provide a 
description of the onset of turbulence in dissipative systems. Universal behaviour has 
also been found in two-dimensional area-preserving or ‘conservative’ systems (see 
e.g. Benettin et a1 1980a, b, Derrida and Pomeau 1980, Bountis 1981, Collet et a1 
1981, Greene et a1 1981). The expression (1.2) is an example of a two-dimensional 
mapping. Generally, the universal constants are different from those found in dissipa- 
tive systems. 

The discrete one- and two-dimensional mappings define the solutions to an infinity 
of difference equations. In classical mechanics and hydrodynamics the systems are 
governed by differential equations. The connection between the well-understood 
chaotic behaviour in the discrete models and the chaotic behaviour in realistic con- 
tinuous systems is far from trivial. In condensed matter physics, however, the physical 
quantities or fields are defined on a discrete lattice. The discrete mathematical models 
therefore apply more directly to problems related to solids. 

The properties of structurally and magnetically modulated systems have been 
analysed numerically and analytically by studying the appropriate two-dimensional 
mappings (Aubry 1979, 1980, Bak 1981, Pokrovsky 1981, Bak and Pokrovsky 1981, 
Fradkin and Huberman 1981). It was found that chaotic structures (i.e. structures 
with randomly pinned defects) are at least metastable. This result may be relevant 
in understanding commensurate-incommensurate transitions, spin glasses, metal- 
insulator transitions in Peierls systems and superionic conductors. No systematic study 
of the onset of chaotic behaviour through bifurcations has been reported so far for 
these models. 

To see that (1.2) indeed is a two-dimensional area-preserving mapping, let us 
introduce new variables x, and y, defined by 

Xn = 4 n  Yn = 4,-1. (1.3) 

The transformation now takes the form 
2 X,+l=-yn+xn(axn+2-a) T :  

Y n + l  = Xn. 
(1.4) 

The transformation T maps one point in the (x ,  y )  space onto another point in ( x ,  y )  
space. The mapping is area-preserving, since its Jacobian is equal to -1. In the paper 
b y  Bak and Pokrovsky the recursion relation (1.4) was studied for a =$ and a = 8 .  
For these values (see figure 2, where a = g) the mapping includes one-dimensional 
orbits (KAM surfaces, see Arnold and Avez 1978), defining incommensurate structures, 
which surround the fixed point at (x, y )  = (0,O). 

We find that for larger values of a the fixed point at (0,O) bifurcates into a 2-cycle 
orbit. Two iterations of (1.4) bring the 2-cycle fixed points (FP) back to their original 
values. At the bifurcation point, the fixed point (0,O) goes from being stable (elliptic) 
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to being unstable (hyperbolic). When a is further increased, the system undergoes 
an infinite series of bifurcations. This behaviour is very similar to that discovered by 
Bountis (1981) for the HCnon mapping (HCnon 1969, 1976, Henon and Heiles 1964). 
In fact, we found two series of bifurcations, and probably there is an infinity of infinite 
series of bifurcations (as also found by Greene et a1 1981). In studying the stability 
of FP and limit cycle sequences we follow a method introduced by Greene (1979), 
who found that, for a large class of 2N-cycles’ two of the limit cycle points lie on a 
simple one-dimensional curve (the symmetry curve). This facilitates the search in the 
two-dimensional ( x ,  y )  space. 

At this point a word of caution is important. The fixed points or limit cycle series, 
which undergo bifurcations, are always elliptic and ‘mathematically’ {table. However, 
the corresponding physical configurations are usually mechanically unstable. Although 
they are extrema of the energy, they do not minimise it. On the other hand, the 
mathematically unstable hyperbolic limit cycle sequences may define mechanically 
stable configurations, but they never bifurcate. Thus, at present, no direct application 
of the theory developed here is obvious. 

In addition to the infinite series of bifurcations we find new features not seen in 
the HCnon mapping. For instance, we find a situation where the fixed point, for 
increasing a, becomes marginally unstable and then becomes stable again. The 
structure of nearby orbits is influenced by this behaviour. Also, at one of the 
instabilities a 2-cycle splits into two 2-cycles and not into one 4-cycle as one would 
expect at a regular bifurcation. 

On the basis of the numerical calculations we determine the ‘Feigenbaum’ conver- 
gence number. 

(1.5) 

where ak is the value of a for which the bifurcation from period 2k to period 2k+1 
takes place. We find S = 8.721 096 . . . . We also calculate the number 

Q k - 2 -  ak-1 S = lim 
k+ca ak-l-ak 

where dk is the distance between the two points on the symmetry curve at the 
bifurcation. (Y determines the scaling of orbits around the limit cycle points as one 
goes from one bifucation to the next. We find 1y = 4.0180. . . . 

These values are, up to the numerical accuracy, the same as for other two- 
dimensional area-preserving mappings (Benettin et a1 1980a, b, Bountis 1981, Greene 
et a1 1981). This supports the hypothesis that (Y and S are universal constants for 
conservative systems. 

2. Orbits and bifurcations 

2.1. The first bifurcation 

The mapping defined by (1.4) has fixed points at ( x ,  y )  = *(l, 1) and (0,O). For small 
values of a the fixed point at (0,O) is ‘elliptic’ or stable. Figure 2 shows orbits calculated 
for a = 8. Apart from a change in variables, this figure corresponds to figure l ( a )  of 
Bak and Pokrovsky. The elliptic fixed points are always surrounded by closed KAM 
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Figure 2. Orbits of the discrete ~5~ mapping defined by (1.4) calculated for a =;. The 
elliptic (stable) fixed point at ( x ,  y) = (0,O) is surrounded by one-dimensional invariant 
KAM surfaces. For a discussion of the various types of orbits, see Bak and Pokrovsky 
(1981). 

surfaces. As the iteration proceeds, the surfaces are filled up ergodically. Some of 
the orbits appear to be broken curves, because the iterations were stopped before the 
curve was 'filled up'. The fixed points at f ( 1 , l )  are always hyperbolic and unstable. 
In addition to the KAM curves there are chaotic orbits and Birkhoff (1917) islands, 
as is quite usual for two-dimensional mappings. If the iteration is started near an 
elliptic fixed point, the orbit will remain near the FP on a KAM surface. If the iteration 
is started near a hyperbolic FP, the procedure will eventually carry the orbit away 
from the m. 

The stability of FP can be investigated by studying the tangent space orbits (Sx,, a y , )  
(Greene 1979). The tangent space orbits at the points (x,, y , )  and ( x , , + ~ ,  Y , + ~ )  are 
related through a matrix M, : 

(SXfl+l ,  SY,+J = M,(SX, ,  SY, )  

( 3 a x : ; 2 - a  -1) 
0 M, = 

detM, is the Jacobian of the transformation. We note that detM, is -1, so the 
transformation is indeed area-preserving. The fixed point at (0,O) is stable as long as 

ITrM,(<2 (2.2) 
at this point (Greene 1979). We see that the fixed point becomes unstable for a = 4. 
Figure 3 shows orbits calculated for a = 3.98 and a = 4.02. Note that the KAM surfaces 
have rotated 90" compared with figure 2. The fixed point bifurcates into a 2-cycle. 
It is not difficult to find the 2-cycle FP analytically from (1.4). The equation 

(2.3) ( x ,  Y 1 = T 2 ( x ,  Y 1 
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X 
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Figure 3. ( a )  Orbits calculated for a = 3.98. This value is slightly below the first bifurcation 
point, a =4. (b)  Orbits calculated for a = 4.02. The fixed point has bifurcated into a 
2-cycle. The original fixed point at (0,O) has become unstable (hyperbolic). 

has the solutions 

(2.4) 
In general, the equations for higher-order limit cycle fixed points cannot be found 
analytically. After the bifurcation the original fixed point is hyperbolic. The new 
elliptic fixed points are surrounded by closed orbits of their own, forming two ‘islands’. 
As the iteration proceeds, these islands are visited successively. At a = 4.02 there 
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are still KAM orbits encircling both FP. At larger values of a these orbits will eventually 
disappear. This process has been studied in detail by Greene (1979) and by Shenker 
and Kandanoff (1981). 

2.2. The ‘starfish’ 

The stability of an N-cycle orbit XI, x2, . . . , xN depends on the matrir .d: 

(SXN, SyN) = A (SxO, ay,) 

(2.5) 

The N-cycle is stable if JTr AI< 2. For the 2-cycle with xn given by (2.4), 

T r A  =4a2-40a+98.  (2.6) 

The 2-cycle becomes marginally unstable at a = 5 ,  since (2.6) has a minimum with 
Tr A = -2 for this value of a. We do not expect bifurcation at a = 5 ,  since the 2-cycle 
is stable also for a > 5 .  

Figure 4 shows the orbits for a =4.995 and a =5.005. Only half the points are 
shown (those with x > 0, y < 0). For each point (x, y )  plotted there is a symmetric 
point at (y, x )  not shown. As a increases beyond 4.02 (figure 3), the two fixed points 
move away from each other, and the surrounding KAM orbits become more and more 
deformed. For instance, it seems that one of the orbits is almost quadratic. As the 
marginally stable value of a is approached, the square orbit seems to get closer and 
closer to the FP, and at a = 5 it rotates 45” (compare 4(a) and 4(b)). A little further 
away there is a series of four islands. The islands belong pairwise to two 4-cycles. 
We have not investigated the history of these islands and the 4-cycle points inside 
them for smaller values of a. 

All of these fixed points are surrounded by a chaotic orbit. For a =4.995 the 
orbits shown are one-dimensional KAM surfaces surrounded by a chaotic orbit (the 
scattered points). For a = 5.005 we found a ‘starfish’ formed by a very irregular 
chaotic orbit. The scattered points outside this orbit belong to a separate chaotic 
orbit. Presumably there are regular and irregular ‘starfish’ orbits both for a < 5 and 
a > 5 .  

We have followed the 4-cycle fixed points numerically for larger values of a. It 
turns out that these cycles bifurcate ad infinitum in a way characterised by universal 
numbers. The first bifurcation (from 4-cycle to 8-cycle) takes place at a = 5.075 75 . . . 
and the last at a = 5.084 593 . .  . . Since this series of bifurcations is structurally 
identical to the one which will be described in the remaining part of this section, we 
shall not discuss it further here. 

2.3. The ‘banana split’ 

Let us return to the original 2-cycle. Nothing dramatic happend to it at a = 5 .  By 
inspection of (2.6) we see that Tr A = +2 for a = 6 ,  so the 2-cycle becomes unstable 
at this point. Does the 2-cycle bifurcate into a 4-cycle? Figure 5 shows orbits calculated 
for a = 5.98 and a = 6.02; again, only half the points are shown. For a = 5.98 the 
fixed point is surrounded by stable KAM surfaces, by higher-order islands and by 
chaotic orbits in the usual way. The orbits are stretched in one direction, indicating 
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Figure 4. ( a )  The 'starfish' (a  = 4.995). The fixed point in the middle is stable, but a is 
approaching the value a = 5, where it becomes marginally unstable. ( b )  The 'starfish' 
(a  = 5.005). The fixed point has passed through the metastable point. Note that the 
square orbit in the middle has rotated 45" compared with figure 4(a). Note also the 
irregular orbit forming the arms of the 'starfish'. The scattered points outside this orbit 
belong to a separate chaotic orbit. 

that a bifurcation is about to take place. The figure has a clear resemblance to a 
banana. Indeed, the fixed points splits (figure 5(b) )  into two elliptic fixed points, 
surrounded by KAM orbits with a hyperbolic FP in between. However, the new fixed 
points belong to two different, but symmetric, 2-cycles and not to the same 4-cycle. 
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Figure 5. ( a )  The ‘banana’ (a  = 5.98). The 2-cycle is approaching instability (a  = 6). ( b )  
The ‘banana split’ (a  = 6.02). The 2-cycle has not bifurcated, but has split into two 2-cycles. 

We call this unusual behaviour, which is distinctly different from a bifurcation, the 
‘banana split’. 

2.4. The symmetry curve 

The fixed points belonging to higher-order cycles cannot be found analytically. A 
method developed by Greene (1979) makes the numerical search easier. It might 
seem that to find fixed points one should search the full ( x , y )  space. However, 
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Greene’s method shows that two of the fixed points, belonging to a 2N-cycle, are 
on a simple one-dimensional curve in (x ,  y )  space (see also Bountis 1981). The 
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Figure 6. The ‘dominant’ symmetry curve y =$ax(xZ-  l ) + x  for three different values of 
a (a = $, a = 4 and a = 6.02, related to figures 2, 3 and 5 ( b )  respectively). The dots on 
the curve with a = 6.02 show the fixed points of the ‘banana split’. Points marked ‘a’ 
form a 2-cycle. whereas points marked ‘p’  are fixed points of another 2-cycle. 
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Figure 7. Bifurcation of the 2-cycle into a 4-cycle orbit: (a )  a = 6.24; ( b )  a = 6.245. 
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Figure 8. Period-doubling bifurcation of the 4-cycle into an 8-cycle. (a),  ( b )  a = 6.27. 
The bifurcation has not yet taken place. Note the very different shapes of orbits around 
the two points belonging to the 4-cycle. As usual the limit cycle points are surrounded 
by KAM orbits, Birkhoff islands and chaotic orbits. 

We note that the transformation T (equation (1.4)) can be split into the product 
of two involutions: 

X n  
2 - Y , + ~ x , ( x ~ - ~ ) + ~ x ,  

I1 : (;;) -P ( (2.7) 

where 

I: =I: = 1. 

Periodic orbits of T can be found by choosing initial conditions (xl, y 1 )  which are 
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Figure 8. Period-doubling bifurcation of the 4-cycle into an 8-cycle. (c), ( d )  a = 6.2716. 
The 4-cycle has bifurcated into an 8-cycle. The two limit cycle points surrounded by 
‘two-dimensional’ orbits are no longer on the symmetry curve, whereas the limit cycle 
points surrounded by ‘one-dimensional’ orbits are on the symmetry curve. 

fixed points of 11: 

or 

2y1= a x l ( x :  - 1) + 2x1.  (2 .86)  

This curve contains either two or no points of any 2N-cycle orbit. If it contains the 
point (xl, y l ) ,  it also contains the point (xNclr y N + l ) .  Following Bountis and Greene 
et a f  we call the curve (2.8) the ‘dominant’ symmetry curve. 

It should be noted that a curve of the form (2 .8)  with x and y interchanged also 
describes the symmetry of the mapping. This is seen by rewriting T = 1 2 1 1  = ( 1 2 1 1 1 d 1 2  
where the fixed point line of the involution 1; = 121112 is the curve (2.8) reflected in 
the y = x  line, It indicates that all 2N-periodic orbits with pairs of points on the 
symmetry curves are symmetric about the 45” line in the plane. For a further discussion 
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of symmetry properties of Hamiltonian maps, see Greene et a1 (1981). In figure 6 
the symmetry curve (2.8) is shown for different values of the parameter a. The dots 
on the curve with a =6.02 are fixed points of the mapping, as shown in figure 5(b )  
(‘banana split’). Points marked ‘a’ form one 2-cycle and points marked ‘p ’  another 
2-cycle. Curves for values of a slightly higher than a =6.02 (related to further 
bifurcations) are very close to this curve. 

2.5. Further bifurcations 

Higher-order limit cycles and their bifurcations are found by the following procedure. 
Suppose we have found an N-cycle for a given value of a and wish to find the N-cycle 
for a slightly different value of a. A point (xl, y l )  on the symmetry curve near the 
previous fixed point is chosen and iterated N times, ending up at a point ( x ~ + ~ ,  yl+N)  
which is different from (xl, yl). A new point ( x i ,  y ; )  on the symmetry curve is chosen, 
and the procedure is iterated until convergence using a Newton iteration technique. 

If we want to find the bifurcation point, the trace of A (equation (2.5)) is calculated. 
If lT rAl<2  the limit cycle is stable. If ITrAl>2 it is unstable. If / T r A I < 2  we 
choose a larger value of a and find a new N-cycle following the procedure above, 
and Tr A is calculated again. The double iteration process is continued until a limit 
cycle with ITr AI= 2 has been found. This defines the bifurcation point. The point 
must be determined with high precision in order to obtain a good estimate of the 
universal constants. We found this bifurcation series to an accuracy of 16 digits. The 
procedure seems complicated, but can actually be performed in a few minutes on a 
desk computer. 

The bifurcation of the 2-cycle is found to take place at al = 6.242 64 .  . . . This 
time it is a real bifurcation leading to a 4-cycle. Figure 7 ( a )  shows the neighbourhood 
of one of the 2-cycle fixed points before the bifurcation (a  =6.24), with the usual 
KAM orbits and Birkhoff islands. Figure 7 ( b )  shows the situation after the bifurcation 
(a = 6.245). 

The next bifurcation occurs at a2 = 6.270 85 . . . . Figures 8(a )  and 8(6) show the 
behaviour of the orbits around the two 4-cycle points, which bifurcated out of the 
2-cycle in figure 7 ( b ) .  Both points are on the symmetry curve. Note that the orbits 
around one of the 4-cycle points are stretched, while the orbits around the other point 
retain their two-dimensional character. The orbits of figures 8 ( a )  and 8(b)  were 
calculated for a value of a slightly below the bifurcation point a2. The scale of figure 
8 is much smaller than those in the previous figures. After the bifurcation, both the 
‘flat’ fixed points are on the symmetry curve for the 8-cycle (figure 8(c)). The two 
elliptic fixed points within the two-dimensional orbits lose their symmetry and bifurcate 
away from the symmetry curve (figure 8(d) ) .  Note that this bifurcation takes place 
along the y axis. 

The story now repeats itself again and again on a smaller and smaller scale. The 
two symmetry points on the 8-cycle behave different1y:the surroundings of the points 
become one- and two-dimensional, respectively. The two-dimensional point loses its 
symmetry; the one-dimensional fixed point splits into two fixed points on the symmetry 
curve of the bifurcated orbit. 

Figure 9 shows the N-cycle fixed points as a function of a. The bifurcations of 
cycles 2” to 2’, 2’ to 22 are shown in figure 9 ( a )  and 2’ to 23, Z3 to 24, 24 to 2’ in 
figure 9(b) .  The marginal stability of the 2-cycle at a = 5 causes no irregularity, 
because this cycle is also stable for a > 5 .  At a = 6 the ‘banana split’ occurs, and we 
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Figure 9. Positions of the fixed points ( x  values) as a function of a. The observable 
bifurcations are in ( a )  from period 1 to 2, 2 to 4 and in ( b )  from period 4 to 8, 8 to 16, 
16 to 32. At a = 6 the 2-cycle splits into two 2-cycles (the 'banana split', figure 5). The 
full curve shows the symmetry road, which always leads to wide fork bifurcations. 

follow only one branch of this splitting. The bifurcation of fixed points away from 
the symmetry curve takes place along the y axis and does not cause a fork in the 
diagram. The bifurcation of the one-dimensional points, on the other hand, leads to 
wide forks defining a symmetry road (cf Bountis 1981), marked by the full curve. 

Table 1 shows the values as ak as a function of k. The distance between the 
symmetry points, dk, at the bifurcation point is also shown. 

We find that the Feigenbaum ratio 

a k - 2 -  ak-1 

Uk-1- a k  
S k  = 

approaches the value S = 8.721 09 . . . for large numbers k. This value is the same as 
found for other two-dimensional conservative mappings, such as the HCnon mapping. 
The quantity 

ak = &i/& 
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Table 1. ak are the values of a, where the 2k-cycles bifurcate into 2k+’-cycles; dk is the 
distance between the two points xo and xN12 on the N-cycle at the bifurcation point. SI, 
and ffk are the ‘Feigenbaum ratios’, which approach the universal values 6 = 
8.721 096. .  . a  =4.018.. . . 

Period 2k 

2’=2 
2’=4 
2 3 = 8  
24 = 16 
2’ = 32 
26 = 64 
27 = 128 
2’ = 256 
2’=512 

O k  

6.242 640 687 119 285 
6.270 857 564 384 179 
6.274 095 612 259 405 
6.274466 973 111 542 
6.274 509 555 467 522 
6.274 514438 163 561 
6.274 514 998 035 401 
6.274 515 062 232 811 
6.274 515 069 593 974 

dk 

1.625 039 840 13 
5.087 561 572 66 X lo-* 
1.287 251 652 77 x lo-’ 
3.174 156 871 78 x lo-’ 
7.915 472 012 8 8 ~  
1.968 944 759 93 x 
4.900 843 100 49 X lo-’ 
1.219 659 824 63 x 
3.035 456 043 73 x 

f f k  

8.714 160 3 
8.719 413 3 
8.721 009 2 
8.721 074 5 
8.721 095 9 
8.721 096 9 
8.721 096 5 

3.952 26 
4.055 41 
4.010 06 
4.020 15 
4.017 56 
4.018 20 
4.018 04 

gives the reduction of scale from the ( k  - 1)th bifurcation to the kth bifurcation. We 
find ak +a = 4.0180 . . . as k + CO. Both values are different from the Feigenbaum 
numbers for one-dimensional mappings or two-dimensional dissipative mappings 
(S=4.66921.  .., a = 2 . 5 0 2 9 0 . .  .). 
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